翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

atomic layer epitaxy : ウィキペディア英語版
atomic layer epitaxy

Atomic layer epitaxy (ALE) or Atomic Layer Chemical Vapor Deposition (ALCVD), now more generally called Atomic Layer Deposition (ALD), is a specialized form of epitaxy that typically deposit alternating monolayers of two elements onto a substrate. The crystal lattice structure achieved is thin, uniform, and aligned with the structure of the substrate. The reactants are brought to the substrate as alternating pulses with "dead" times in between. ALE makes use of the fact that the incoming material is bound strongly until all sites available for chemisorption are occupied. The dead times are used to flush the excess material.
It is mostly used in semiconductor fabrication to grow thin films of thickness of the atomic order.
==Technique==

This technique was invented in 1970, then patented in 1977, by Dr. Tuomo Suntola, at the Helsinki University of Technology in Finland. Dr. Suntola tried in fact to grow thin films of Zinc sulfide to fabricate electroluminescent flat panel displays. The main trick used for this technique is the use of a self-limiting chemical reaction to control in a very accurate way the thickness of the film deposited.
Compared to basic chemical vapour deposition for example, chemical reactants are pulsed alternatively in a reaction chamber and then chemisorb on to the surface of the substrate in order to form the monolayer. This is very clever because the reaction is very easy to set up and it doesn’t require that many restrictions over the reactants, allowing the use of a wide range of materials.
ALD introduces two complementary precursors (e.g. Al(CH3)3 and H2O) alternatively into the reaction chamber. Typically, one of the precursors will adsorb onto the substrate surface until it saturates the surface and further growth cannot occur until the second precursor is introduced. Thus the film thickness is controlled by the number of precursor cycles rather than the deposition time as is the case for conventional CVD processes. ALD allows for extremely precise control of film thickness and uniformity.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「atomic layer epitaxy」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.